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We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of am-
phiphilic fluids[H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A
456, 2043(2000]. Our method maintains an orientational degree of freedom for the amphiphilic species and
models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the
particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the
results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the
correct phenomenology of binary and ternary amphiphilic fluids.

PACS numbeps): 82.70-~y, 47.20.Hw, 64.75t9g

[. INTRODUCTION formulate a hydrodynamic description of these fluids. Micro-
scopic approaches, based on molecular dynamics, are able to
The lattice-BoltzmannLB) method is a mesoscopic ap- deal with amphiphilic fluids, but they are still computation-
proach to the study of the dynamics of fluids, intermediateally too demanding to investigate large-time dynanttoses
between macroscopic models, based on Navier-Stokes equscales accessible to MD are typically of the order of nano-
tions, and microscopic approaches, based on molecular dgecondg11] whereas important time scales in such complex
namics(MD) simulations. In this method, time, velocity, and fluids vary between 10— 10* s) and the extended spatial
space are all discretized and a single-particle distributiorstructures involved in many problems of interest.
function is utilized to describe the time evolution of an en- The formation of fluid interfaces is a consequence of in-
semble of molecules having a discrete set of possible velocieraction between the molecules of the flu[d2], and the
ties[1,2]. The computationally demanding tracking of indi- LB models for multicomponent fluids come in two varieties,
vidual molecules is thus avoided and at the same time thdepending on the way interactions between fluid components
ensemble-averaged distribution function retains much of thare incorporated. In the free-energy approgtB—15 the
microscopic information. Macroscopic or hydrodynamic ef-starting point is aransatzfor the free-energy functional of
fects naturally emerge from mesoscale lattice-Boltzmann dythe complex interacting fluid and the approach to equilibrium
namics, provided that the LB equation possesses the correist assumed to be governed by a Ginzburg-Landau or Cahn-
and necessary conservation laws and symmdttieslistori- ~ Hillard equation or some suitable generalization thereof. A
cally, the lattice-Boltzmann model was first derived from itsLB collision operator is then constructed that gives rise to
predecessor—the lattice-gas automdt&A) [3—6—but it  the desired evolution equation in the hydrodynamic limit.
has been shown recently that the model can also be derivéthe most attractive feature of this model is that the equilib-
from kinetic theory by discretization of the Boltzmann equa-rium state is fixed priori by the choice of free-energy func-
tion in velocity, space, and tim¢,8]. tional. This guarantees thermodynamic consistency at equi-
An important and promising area of application of thelibrium but limits the description of nonequilibrium
lattice-Boltzmann method is for modeling the dynamics ofdynamics. For example, the one-component free energy
multicomponent fluids. There is in particular much funda-model is not Galilean invarianf16]. Furthermore, the
mental and technological interest in modeling amphiphilicmethod relies on the ability to postulate a suitable form for
systems; i.e., fluids comprising one or two immiscible phaseghe free energy, which might not be always available. An
(such as oil and watgrand an amphiphilic specigsurfac-  alternative approach, which is closer in spirit to kinetic
tand. The addition of surfactant to a binary immiscible fluid theory, is to add interactions between fluid components by
can result in complex structures on a mesoscopic lengtitroducing intermolecular forces between fluid particles
scale, including lamellar, micelles and microemulsion phasegl7,24. Very recently we proposed such a lattice-Boltzmann
[9,10]. The nonequilibrium dynamics and hydrodynamics ofmodel for amphiphilic fluidg25] which is based on intro-
these systems are difficult to simulate using a continuunducing the dynamics and interactions of amphiphilic mol-
approach based on Navier-Stokes equations. One major diécules into the multicomponent lattice-Boltzmann scheme of
ficulty these methods face is the existence of complicate@®han and Chefil7]. In the resulting ternary vector model,
interfaces between fluid components which can undergo towhich was inspired by the lattice-gas automét&A) for-
pological changes; another is that it is far from clear how tomalism of Boghosian Coveney and Emertof26],

1063-651X/2000/6@)/828213)/$15.00 PRE 62 8282 ©2000 The American Physical Society



PRE 62 LATTICE-BOLTZMAN MODEL FOR INTERACTING . .. 8283

amphiphilic species possess both translational and orientd%e also require that the momentum of all components to-
tional degrees of freedom, a feature which is crucial for capgether should be conserved locally
turing much of the abovedescribed phenomenology of am-
phiphilic systems.

The principal aim of the present paper is to further de- 2 mozi: ¢{y=0. ©)
velop and explore this model and to assess and establish its 7
general validity for modeling the dynamics of amphiphilic A common choice which satisfies the above constraints is
systems. In Sec. Il we give a detailed description of the'[20 21]
model and show that with slight modification, the mean-field~™ "
treatment of intermolecular interactions in the modet, 25
can be made consistent with the mean-field kinetic theory of
interacting fluids, based on a set of coupled Boltzmann equa-
tions. In Sec. Il we use this modified model to simulate the
nonequilibrium dynamics of binary immiscible and binary \yherew, is a weight factor ands is the speed of sound, both
and ternary amphiphilic fluids in two dimensions. Thesegt \yhich are determined entirely by the choice of lattice. For
simulations demonstrate that the model exhibits the Corre“éxample, in the so-called D3Q19 latti§21] (19 velocity

dynamical behavior in the case of critical quenches of binary . tors in three dimensions.=1/\3 and »,=1/3, 1/18
fluids and it is capable of describing in a consistent way the, \§ 1/36 fore =0 e =1 andé-=2 respecti\I/er ’ ’
I L | ’ | 1 .

phenomt_anology of various experimentally observed self- The requirement that the total velocity of all components
yether should be conserved at each lattice point results in
e following form for the common velocity

1 1 1
f7eD=wn?| 1+ ?Ci'u“LF(Ci'U)z— por L )
s s s

microemulsion phases, the arrest of separation of immiscibl
oil-water phases when enough surfactant is present in th
system, and the formation of the lamellar phases in binary

water-surfactant systems. Finally, in Sec. V we draw some E pou”

conclusions from this work and discuss the prospects of fu- ~ ¢ T4

ture developments of the model. u= —2 07 (7)
g To'

II. LATTICE-BOLTZMANN MODEL FOR INTERACTING

FLUID MIXTURES where we have introduced the dimensionless relaxation time

The lattice-Boltzmann scheme for a fluid mixture having 7,=\,/At.
Scomponents is defined in terms of the distribution functions  In the limit of small Mach numbers, i.eu/c,<1, where
f7(x,t) belonging to the particles of componewstof the  the right-hand side of Eq6) is positive, the above choice of
fluid mixture (e.g., o=water or oil in a binary systemin 79 results in Navier-Stokes hydrodynamics, where each
the BGK approximatiorj19] of the collision operator these fluid component ¢ has kinematic viscosity v,= (7,
equations ar¢2,7] — 1/2)05 [20].

fiU_ fiU(EQ)

f7(x+gAt,t+At) —f7(x,t)=— X

At, (D) A. Mean-field treatment of interactions

(o8

In order to describe immiscibility effects, some form of
wherec, (i=0,1, ... M) are a set of discrete velocity vec- epulsive interaction between fluid components must be in-
tors on a regular lattices is a point on the underlying spatial roduced into the LB equations. In the Shan-Chen scheme
grid, fiU(EQ) is a local equilibrium distribution function, is [17], coupling between fluid components is achieved by in-

the relaxation time for component, andAt is the time step. cluding intermolecular interactions in the model. These in-
The number density” and the mean velocity” of com- teractions are modeled as a self-consistently generated mean-

: field force. Allowing only homogeneous isotropic interac-
onento are given b ) . )
P 7 9 y tions between nearest-neighbors, the mean-field fefcact-
ing on particles of component is given by

n(xt)=2 7, @
F D= =9 (xD 2 2 gt (X, DX =%),  (8)

p”(x,t)u”(x,t)zm"z Gfi, (3 . _
[ where ¢7=¢[p?(x,t)] is the so-called effective mass,
_ ) ) which can have a general form for modeling various types of
with p?=m“n? the density andn” the mass of species. fluids (in the present study we have takgfi=p”) andg,;
The equilibrium distribution function should be chosen injs a force coupling constant, whose magnitude controls the
sucr(ea way that the BGK collision operatéli’=—(f{"  gyength of the interaction between componerand o and
— 79I\, locally conserves the mass of each spedies  \yhose sign determines whether this interaction is repulsive
(9,5>0) or attractive §,,<0). Shan and Chen incorpo-
E Q=0. (4) _rated the above force term in the LB dynamics by adding an
i increment{17]
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7 1 G- Cj
5UU:_U_At (9) Aﬁ‘T:wi _2(Ci_cj)+_4ci a(,At. (13)
p Cs Cs

Thus the net effect of the force term is to introduce off-
diagonal matrix elements in the BGK collision operators.

With the choiced” = o the ab freat t of int These matrix elements describe transitions from state
Ith the ¢ Q'Ce‘/’. —p- the above treatment of intermo- statec; , andvice versadue to the drift of particles under the
lecular interactions is consistent with kinetic theories of in-

) S . ! . . _influence of the force during the tim&t. In the case of a
teracting fluids, in which non-local interactions are describe d

by int_:luding a self-consisten_tly gen_erated r_nean-figld fOrceﬂuid components even in the absence of the mean-field
term in the Boltzmann equation while local interactions are o~ (eq)
treated as true collisions. Indeed, kinetic equations of thid2rce: through the common velocity which entersf™=".
type have been successfully applied to describe gas-gas seﬂ_a{le mean-field fqrce m'groduces an a<_jd|t|0nal non-local cou-
ration into two phasef22] and, more recently, spinodal de- pImg between fluid particles and in this case ELl) can be
composition in binary fluidg27]. However, the way the rewritten as
mean-field force enters the Shan-Chen model is not entirely
consistent with the Boltzmann equation in the presence of a

to the velocityu which enters the equilibrium distribution
function (6) in the BGK collision operator.

f7(x+cAt,t+At)—f7(x,1)

force [28,29. The explicit expression for the force term in fo_ goi(ed

~ I i — —
the Shan-Chen model can be obtained by substituting ——————+ 2 2 AT, (19
+ 6u into the equilibrium distribution function. This yields To o

whereA-‘T; are matrix elements of the cross-collision opera-
PO GAL T AL — TP ) I P

tor
I LR R CR)
= Fon’ +——¢ |a,At oo GG
P e A= | 5 (8,56 — ay5C) + @y 57— G [3,AL (15)
CS CS
1 a? (g-a,)? -
—Swin?| = - # T A2, (10) with
2 c2 ce B
P
wherea,=F/p? is force per unit mass. As was shown by n° T
Luo [28] and by Martyset al. [29], by omitting the second %Z:n—; —. (16)
order term ina, the above equation can be made consistent 2 P
with a systematic derivation of the lattice-Boltzmann model o Ty

in the presence of the forag,, as obtained from discretiza-

tion of the corresponding Boltzmann equation, in the low The above treatment of intermolecular interactions does
Mach-number regime. In our scheme we omit this non-lineanot take into account strong repulsive interactions between
term when calculating the effect of the self-consistently genimolecules at short distance which prevent them to overlay
erated mean-field force, so that the resulting lattice{the excluded volume effe¢23]). This effect is important in
Boltzmann scheme is consistent with the underlying Boltzcalculating transport coefficients of dense gases and fluids
mann equation in the presence of a force. Our final lattice[23] but we do not expect it to significantly alter the dynam-

Boltzmann equation is then given by ics of microemulsions, which is the main focus of our
present work. The excluded volume effect can be introduced
- o in the model by adding Enskog corrections to the BGK col-
O GALETHAD (X1 lision 0perat0r[é4]. ’ ’
N - )
=TT taen 2 + P a,At. B. Modeling surfactant dynamics and interactions
T s s

A surfactant(or amphiphilig molecule usually possesses

(1D two different fragments, each having an affinity for one of
the two immiscible components. In the case of a prototype

In the case of a single-component interacting fluid, rewrit-mixture of immiscible fluids such as oil and water, a typical
ing the force term in terms of distribution function§ leads  surfactant molecule would be an amphiphile that has a hy-

to the following lattice-Boltzmann equation: drophilic head preferring to be in contact with water mol-
ecules, and a hydrophobic tail preferring to be surrounded by

firr_ffri(eq) oil. Under equilibrium conditions the surfactants are pre-
fO(X+GALt+At) — FI(x,t)= — —'+2 AJOET, d_omlnantly a_dsorbed at the 0|I-Water_ mt_erface, _hence effec-
To i tively screening the two-body repulsive interaction between

(12 immiscible species. In our scherfi25] these essential char-
acteristics of amphiphilic molecules are modeled by intro-
whereAj;” is given by ducing a separate amphiphilic species into the Shan-Chen
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model which possesses both translational and rotational déa Eq. (21) hy and h, are the mean fields resulting from
grees of freedom. This is achieved by modeling these speciefipole-dipole interactions and the interaction between surfac-
as idealized point dipoles. Consequently, the interaction ofant dipoles and nonamphiphilic molecules, respectively. In
the amphiphilic molecules with each other and with nonam-Eq. (20) bothd, and the inverse temperatuse are indepen-
phiphilic moleculegsuch as oil and watgdepends not only dent parameters. Performing the integral yields for the equi-
on their relative distance but also on their dipolar orientatiorlibrium distribution

[26]. Furthermore, a full description of the dynamics of am-

phiphilic molecules requires a description of the propagation

of each single-particle distribution function as well as the

time evolution of their dipole vectors. Making the physically
reasonable assumption that the dipole moment carried by, 3D and
amphiphilic molecules is independent of their velocity, an

average dipole vectal(x,t) is introduced at each siterep- I.(Bh)] .
resenting the orientation of any amphiphile present there. deq:doL (ﬂh)}h
The propagation of the amphiphilic molecules is then de- 0
scribed in our scheme by a set of BGK-like equations, ong, 2D, whereh is the magnitude ofi=h.+h., andl, andl,

for the distribution functiorf? and one for the relaxation of are the zero and the first order modified Bessel functions
the average dipole vectal(x,t) to its local equilibrium ori-  [31], respectively.

deq: do

1.
coth(Bh)— %}h (22

(23

entation[25]: e, e water and ofl moecules i
fP(x+cAt,t+At) —fi(x,t) given by
£S5 fs(eq) i ) ) | |
-+ 2 Aﬁsm; ASSES, h (x,t)—g e(,Z N7(x+GAt, )G, (24)
S (o

(177  wheree, is the “charge” for various molecular components
(which may take its values from the st 1,0,1}). In the
present simulations we take=1 for water molecules and
e=—1 for oil molecules. Similarly, the mean-field generated
by other surfactant molecules is given by

d(x,t+At)=d(x,t)— ;[E(x,t) —d®(x,t)]. (18
d

In the above equationf§(x,t) is the distribution function of

surfactant molecules ang, and =4 are dimensionless relax- R _ R

ation times representing the rates of relaxatiofi’¢x,t) and h (x,t)—}i: jZ’o Ni(X+GAL Y G- di(x+cALY)
d(x,t) to their local equilibrium distributionsf% and

d®9(x,t), respectively. The collision op(_arator‘xs{JTS and A7? o6 (1) |, 25
have the same form as E@.5) and describe the effect of the

total mean-field force experienced by surfactant particles due
to their interactions with nonamphiphilic particles and with where
other amphiphilic particles. We shall specify these forces

shortly. Finally,d(x,t) is obtained from the following equa- CiC;
tion of motion: 6=1-D 2
i
nS(x,t)d(x,t)=2 fi(x—cAt)d(x—cAt,t). (19 is the traceless second-rank tensor Bnid dimension of the
: lattice.

Finally, we specify the form of interaction between am-
phiphilic molecules with water and oil particles and between
amphiphilic molecules themselves. These are obtained from
Eqg. (8) by treating each amphiphilic molecule as a pair of
water and oil molecules displaced by a distad¢e,t) from
each other and performing a Taylor expansiordiin the
resulting expression for the total for¢@5]. Assuming that

The equilibrium distribution functiorf 3% is chosen to
have the same form as E@&) and, in analogy with the Weiss
molecular field theory of magnetisfi80], the equilibrium
distribution d*4x,t) is obtained self-consistently from the
Boltzmann distribution as

f e AY%9dQ the dipole head and tail have equal and opposite charges
d®qx,t)=d, , (20) =+1 and with only nearest-neighbor interactions consid-
f e BYd0 ered, the additional forces are given by
whered() is an element of solid anglg,is a unit vector, and FO3(x,t) = —Zdza(x,t)g(,si;) d(x+cAt)
U is the potential energy of a dipole in the mean field gen-
erated by dipolar amphiphiles and nonamphiphilic molecules GG .
X| 1= —D | F(x+GALL), (26)
U=—V-(hs+h). (21 Ci
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FSC(x,t)=245(x,1)d(x,1) The CPU time and memory requirements of our algorithm
both scale~LP, whereL is the linear dimension of the lat-
tice. In two dimensions we were able to study adequate sys-

Pr(x+a,t), tem sizes using typical serial workstations. For example,
simulation of a ternary system on a Z9attice on a Silicon

(27 Graphics 250 MHz processor workstation takes just under 8
h to reach 3000 time stepswitching off the subroutines
and which perform the surfactant dynamics calculations reduces
D the CPU time by 50%.For the present calculations we used
] a serial implementation of our lattice-Boltzmann algorithm.
Fo3(x.t)=— ?QSS¢S(X)Z {d(x+ciAt,t)d(x,t). In three dimensions, however, the serial algorithm quickly
becomes prohibitive in terms of computer memory for mod-

GG
XE gu—sz (I_I_ZID
o 0 C:

i+ i

GG erately sized systems. Fortunately, an important feature of
= —D|c+[d(x+cAt,t)d(xt) LB is its intrinsically parallel structure and we have imple-
Ci mented a parallel version of our algoritHi8] which allows

us to perform very large-scale 3D simulations on massively

+d(x,t)d(x+cAt,t)]-G | $3(X+C+Att). parallel platforms. We plan to report on the three-
dimensional model in future publications.

(28)
A. Binary oil-water system
H o,S 1 - . . . . .
Inh.thﬁl.above. (TquauonE is the force acting ?Tn ;'?nam The dynamics of phase separation in a binary mixture,
phiphiiic Cp_artlc eso (water and oil due to amphiphile di-  (5)15\ing a thermal quench into the unstable coexistence re-
poles,F>* is the force acting on amspsh!phlllc molecules dueé gime proceeds by spinodal decomposition. Immediately af-
to all _nor_1gmph|ph|||c particles, ane>® is the for_ce among  ter the quench, small domains, with local concentrations
amphiphilic molecules themselves. The coupling constantg,ghly corresponding to that of the two pure immiscible
9,5 andgss determine, respectively, the strength of interac-phases, spontaneously form and grow and finally result in
tion between water and oil molecules and surfactant mo'tomplete phase separatif®2]. To simulate phase separa-
ecules, and among surfactant molecules themselves. Thg, e set up a simulation with equal quantities of water and
coupling coefficientgss should be chosen negative if we o with average densities 0.5, and no surfactant pre&ent
wish to model attraction between two amphiphile heads ofcyitical quench”). This choice of average densities ensures

tails, and repulsion between a head and a tail. that we are well within the immiscibility region of the model.
The initial condition of these simulations is a uniform mix-
Ill. SIMULATIONS ture of the two fluids with small random fluctuations in the

A ioned lier th incinal ai £ th uniform densities. These fluctuations are necessary to move
s mentioned earlier the principal aim of the presenty,, system out of a metastable uniform state, in which the

wor_k s to assess the ability of our model_to _r_eproc_iuce thPmean-field forces are identically zero. The force term is ini-
basic properties of self-assembling amphiphilic fluids. For,

: . tially set to zero and? are set tof "®® calculated frorm”
this reason we choose not to explore the entire parameter "™

space of the model in the present study but rather fin@"du=0 [Eq.(7)]. _ _ _

through a limited search in this space a canonical set of pa- AS ¢an be seen from Fig. 1, immediately after the quench
rameters which allows us to describe generic behavior in §Mall domains spontaneously start to form. As time evolves,
consistent way. Another important consideration in choosingharP interfaces develop between the regions associated with
the parameters relates to the numerical instabilities whicfgach phase, and the branchlike structures which were formed
were found to occur when the force coupling consgy at the earlier stage of simulations coarsen. The growth of
Uue, andge., or the mean densities, were increased beyonaiomams continues and, if left to run for a large enough time,
certain threshold values. We found that these instabilitiedh® System would eventually reach the completely separated
occur when the forcing terms cause the right-hand side optate of tvvp distinct layers of fluid. Phase-separanon.expen-
Egs. (14) and (17) to become negative and are caused by dN€Nts typically measure the structure facgfkt), which
combination of the mean-field treatment of interparticle jn-CONt&ins information on the time evolution of the various
teractions and the restriction of the lattice-Boltzmann schem&ndth scales present in the system. It is defined as the Fou-
to low Mach numbers. With these considerations in mind Her transform of the density-density correlation function. For
and after a restricted search in the parameter space of thige discrete systems we are studying, we consider equiva-

model we arrived at the following set of canonical param-€ntly

eters which, unless stated otherwise, are used throughout our 1 2
simulations(the time stepAt is set to 1 throughoutg,, S(k,t)=—| > [q(x,t) —q(t)]e* ¥ | (29)
=0, g,-=0.03, g = —0.01, go— 0.01, 7,= 7= 1, 74=2, N |

m?=1, m*=2,dy=1, andB=10. All calculations were per- o ]
formed on a 258 lattice subject to periodic boundary condi- Wherek=(2x/L)(mi+nj), mn=12,...L; hereL is the
tions. In the case of the binary oil-water systems we alsdinear lattice sizeN=L? is the total number of grid points in
performed additional calculations on $18nd 128 lattices  the systemg(x,t)=n"2*(x,t) —n®(x,t) is the total color
in order to check for finite size effects. order parameter at grid point and timet, andq(t) is the
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k (inverse lattice units)

' :
] FIG. 2. Temporal evolution o$(k,t) for a critical quench in a
binary oil-water system. Time steps shown are, from bottom to top,
t=3200,4000,6400,9600,12 000,14 400,20 000,24 000. The system
I : “ . size is 513.

FIG. 1. Snapshots of phase separation of a binary oil-water mixshifts to smaller wave numbers and its height increases, in-
ture during a critical quench. From left to right and top to bottom dicating the coarsening of the domains. At intermediate
time steps 0,800,1600,2400,3200,4800,6400,8000,12 000,16 OOQmeS we also observe the appearance of a second peak in
20 000,24 000,30 000,45 000,60 000,90 000 are shown. The systeg(k t), which later on becomes a shoulder of the main peak
size is 256. and then merges with it. After an initial transient regime, the

) , . dynamics of phase separation is often characterized by a
spatial average of(y,t) at timet. S(k,t) is further smoothed  gjnge length scale. This length scale is usually described by
by averaging over an entire shell knspace to obtain the 4 power law behavioR(t) =t¢. Simple dimensional analysis
circularly averaged structure factor of the hydrodynamical evolution equations in 2D yields for

the domain growth exponent=2/3, when the binary system
> skt is in the inertial hydrodynamic regim&2,33.
K In Fig. 3 the time evolution oR(t) is shown as obtained
S(kit)= ———, (300 from our lattice-Boltzmann simulations with system size
Z 1 512°. Finite-size effects in this quantity are known to be-
k come important wheR(t) is comparable to the linear size of

where the sumS; is over a circular shell defined byn( the latticeL. We checked these effects by performing addi-

—3)<|k|L/2m<(n+3) and the cutoff wave vectdk, has

the maximum possible value which is compatible with the
periodicity in k space. We use the first moment of the 43 r ]
circularly-averaged structure factor as a measure of the char-
acteristic length scale of the system
S ksik — 38
2 Sk,t) 3
k(t)y=——. (31 £
> sk
K 33t
The characteristic size of the domains is then given by Lt
R(t)=2m/k(t). L
Figure 2 displays the temporal evolution of the circularly- 2.8 - :

9 10

averaged structure factor obtained for a critical quench in a Int)

512 system. At early times in the simulationis<(4000 time

step$ we observed that the amplitude of the peak in the g 3 Logarithm of the average domain si&ét) (lattice
structure factor increases without the position of the pealgnitgy as a function of the logarithm of the tin{éme steps with
changing in time. This behavior is indicative of initial sharp- gata taken from lattice-Boltzmann simulations of a critical quench
ening of the domains, as the amplitude of the peaR(ikit) in binary immiscible phase separation. The straight line corresponds
is proportional to the domain mass within a characteristico a growth exponent=0.66 and is provided as a guide to the eye
domain size. As time evolves further, the peakSfk,t) only. The system size is 512
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FIG. 4. Snapshots of time evolution of oil-in-
water droplet microemulsion phase. From left
to right and top to bottom time
steps  0,200,400,600,800,1200,1600,2000,3000,
4000,5000,6000 are shown. The system size is
256,

tional calculations oR(t) for system sizes 128and 256. In order to reproduce the oil-in-water droplet phase, we
By comparing the results we deduced that finite-size errors iset up a simulation with a uniform mixture of oil, water, and
our 2D simulations become important whBt)=L/5. The  surfactant with small density fluctuations as our initial con-
3D lattice-Boltzmann simulations of Kendet al.[34] seem  figuration. The average densities of oil, water, and surfactant
to indicate a somewhat larger value Rft) beyond which are 0.42, 0.6, and 0.1, respectively. Figure 4 displays the
these errors become pronounced. This might indicate thaktsults. We see the rapid formation of many small oil-in-
finite-size effects are more significant in 2D. Discarding bothwater droplets, whose size initially increases slightly, but not
the early-time transient regime and the late-time regimewithout limit. This is characteristic of the experimental drop-
where finite-size effects are pronounced, we found that théet phase. It occurs because the free energy penalty associ-
late-time behavior ofR(t) in our simulations isR(t) ated with the existence of many oil-water interfaces in this
~10-66=001 in good agreement with the abovementionedphase, as compared to the complete oil-water phase separa-
scaling arguments and previous lattice-§a6] and lattice-  tion, is compensated by the gain in free energy due to ad-
Boltzmann[40] simulations of phase separation in 2D. We sorption of surfactant dipoles at these interfaces. If coarsen-
note, however, that this result is only a first qualitative studying of oil droplets was to continue the interface area for
of the dynamics of phase separation within our model anddsorption of surfactant dipoles would decrease resulting in
more work is needed in order to unambiguously identify dif-an increase in the amount of surfactant in bulk water or oil.
ferent scaling regimes within the parameter space of th&he free energy penalty for bulk surfactant prevents this
model. from happening. The concentration of the surfactant is not
visible in Fig. 4, but is high at the interface and low in
oil-rich and water-rich regions, with the surfactant dipoles at
the interface pointing on average from water-rich region to-
wards the oil-reach dropletsee also Fig. 1 and Fig. 2 in
We used our model to simulate the different ternary mi-Ref. [25]).
croemulsion phases that are possible in 2D, namely, the oil- In order to further quantify the result we show in Fig. 5
in-water droplet and sponge phases. In experimental systentise time evolution of the circularly averaged structure factor
the two distinct microemulsion phases will form when the S(k,t). Once again we observe the formation of a distinct
appropriate concentrations of oil, water, and surfactant arpeak in the structure factor, indicating the sharpening of the
present in the system below the critical temperature. Thelomains. Interestingly, this happens much faster than in the
oil-in-water droplet phase typically consists of finely divided case of the binary system. The presence of the surfactant
spherical regions of oil, with stabilizing monolayers of sur- seems to accelerate domain formation in the early stage of
factant surrounding them, embedded within a continuous waphase separation, an effect which has also been seen in the
ter background. If one increases the relative amount of oil ihybrid Ginzburg-Landau simulations of Kawakatet al.
the system and there is sufficient amphiphile present, ong35], and should be detectable experimentally. As time
observes the formation of mutually percolating tubular re-evolves the peak ir5(k,t) increases in height and shifts
gions of oil in water, with a monolayer of surfactant sitting at further towards smaller values of the wavelength, indicating
the interface. In both these cases, the equilibrium state dodke growth of droplets. From at least time step 5000 onwards
not correspond to complete separation of immiscible oil andhere appears to be a negligible amount of further movement
water regions, but rather to complex structures with veryof the position of the peak, indicating that droplets have
different characteristic length scales that form as the result afeached a maximum size and will grow no more. We ob-
the presence of amphiphif@O]. served small oscillations in the intensity of the peak in

B. Microemulsion phases: oil droplets in water
and sponge phase
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FIG. 5. Temporal evolution of the circularly-averaged structure g1 7. Temporal evolution of the circularly-averaged structure
factor S(k,t) for the microemulsion droplet phase shown in Fig. 4. factor S(k,t) for the sponge microemulsion phase shown in Fig. 6.
Time steps shown, from bottom to top, ate200,1000,2000, Time steps shown, from bottom to top, are=200,1000

3000,5000,6000. 2000,3000,4000,6000.

S(k,t) which suggest that the characteristic domain mass ¢ The effect of surfactant on domain growth dynamics
fluctuates in time. . . .
To investigate the ability of the model to access the To further investigate the effect of surfactant on domain

sponge phase, we set the average densities of water and gfoWth dynamics in the sponge-phase we performed addi-

both equal to 0.5 while keeping the average density of syrtional simulations in which we kept the average density of
il and water fixed at 0.5 while gradually increasing the

factant at the same value as before. The results are shown ! t of surfactant in th ; Th densiti f
Fig. 6. Starting once again from a perturbed uniform mixture2MOUNt ot surtactant in the system. The average densities o

of fluids, this time we observe the growth of an intercon—surfac'{ant used in these simulations are 0.05,0.1,0.15,
' . : 0.20,0.30. We analyze the effect of varying the surfactant
nected network of tubular regions of oil and water. The

. . . o concentration using the domain sigt) as a quantitative
width o.f the oil and we}ter regions grows in size up to a.bommeasure. The domain size is calculated from the circularly
4000 time steps. During this time the surfactant particlesyyeraged structure factor, as described in Sec. I1. The resuits
which were initially distributed uniformly in the system, con- ;.o summarized in Fig. 8 where the domain sizes are plotted
centrate around the various oil-water interfaces. Beyond thiggainst time, and as a function of increasing surfactant con-
stage the system changes very little, indicating that the obgentration. The presence of the surfactant significantly re-
served sponge phase is stable. This is also confirmed by owdrds the growth of the domains and it can be clearly seen
result for the circularly-averaged structure factor shown inthat for surfactant concentrations larger than 0.05, the do-
Fig. 7. main size reaches saturation. Following Boghosian, Cov-

FIG. 6. Snapshots of time evolution of sponge
microemulsion phase. From left to right and top
to bottom time steps 0,200,400,600,800,1200,
1600,2000,3000,4000,5000,6000 are shown. The
system size is 256
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FIG. 8. Time evolution of average domain sigét) (lattice FIG. 9. Final domain sizeR; (lattice unit3 as a function of the

units) in a ternary system with equal concentrations of water and oiinverse of the surfactant concentratiomgl/ The solid line is a
(0.5). Curves from top to bottom correspond to systems with averlinear fit to the first four points of our data.
age surfactant concentration 0.05,0.1,0.15,0.2,0.3. The full lines are

the stretched exponential fits to our data. namics of ternary oil-water-surfactant systems and found that
the final domain sizé; is inversely proportional to the av-

eney, and Emertof86], we analyzed the time-dependence Oferage concentration of surfactant molecies

domain growth in terms of a stretched exponential form

R(t)=R,.—aexp —ct?), (32 1
Ri~=. (33

whereR,,, a, ¢, andd are adjustable parameters, which are Ns
determined by a least-square fit to our data. As can be seen
from Fig. 8 this form fits our results extremely well across|n the deep quenches performed by Larajal. surfactant
the full time scale of the simulations and for all surfactantmolecules entirely reside at the interfaces. This was not the
concentrations considered. We also investigated a fit of thease in the lattice-gas simulations of Emertral. [36] in
logarithmic form R(t)=a+b(Int), which describes the \hich a certain amount of surfactant existed as monomer in

phase-separation of binary alloys in the presence of impuri ; ; — :
ties [37]. Obviously, this form is unable to describe the late bulk oil or water. After subtracting away froms a back

i . Y eground monomer density, these authors also found a linear
ime saturation of the domain size and we found that th . . — e o
root-mean-square errors using this form to describe the earl Iatlonsh|p_betwe_:eer and l.hs' A _S|m|lar_ situation to
times of domain formation are also an order of magnitudg@tlicé-gas simulations occurs in our simulations where a sig-
larger than those of the stretched exponential form. In théuflcant fraction of surfactant exists as monomers in bulk_0|l
case with average surfactant density equal to 0.05 the d water. However, we found that even without correcting
main size does not saturate; nevertheless(&2).provides a  10F the background monomer density of surfactant &3
better fit to the slow growth of the domain size than the91VES @ very good description of the relationship betwen
logarithmic form for the time interval we considered<®@ andns. This is shown in Fig. 9 wher® is plotted versus
<12000). LGA simulation$36,38 indicate, however, that the inverse ofh. The condition that all surfactant molecules
the logarithmic from is a good fit for describing the dynam- should be at the interface does not therefore seem necessary
ics of “metastable” (i.e., long-lived emulsions which do for Eq. (33) to hold, as long as the surfactant molecules are
eventually phase separate. mainly concentrated at the interface.

At late times in these simulations, small but persistent
oscillations inR(t) can be seen in Fig. 8, which are absent in
the case of binary systems. These oscillations have also been
observed in LGA simulations, both in 2[86] and in 3D Next we use our model to investigate the stability of a
[38]. Their presence in our lattice-Boltzmann simulationslamellar structure, which is composed of alternating layers of
confirms that these oscillations are caused by the additionalil-rich and water-rich phases separated by a layer of surfac-
dynamics which the presence of amphiphile introduces intdant. A preliminary discussion was given[iB5]. We look at
the system: they are not a consequence of statistical fluctughe system with and without surfactant present in order for a
tions inherent in LGA. critical comparison to be made. A similar investigation of the

Finally, we investigate the relationship between the finallamellar structure in 2D and in 3D has been performed pre-
size of the domains and the surfactant concentration. Laradjiiously using LGA[26,39. In a similar way to those simu-
et al. [41] used simplified MD simulations to study the dy- lations, we set up the initial configuration of the system as

D. Ternary phase: Lamellae
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FIG. 10. Snapshots of the evolution of the lamellar structure in

the absence of surfactant. Time steps shown are clockwise from toj 0.3
to bottomt=0,300,600,3000,6000,9000. The system size i£256

1.0

0.5
f o0 initial
m§ final (surf)
3 final

. :

0.8

weraged

layers of pure oil and pure water eight sites wide such thatz -2

each species has an average density 1.0.

Snapshots of our simulations for the binary case are -07
shown in Fig. 10 for time stefds<9000. As can be seen from
this figure, the initial layered structure becomes less sharply  _y» L. ‘ ‘ ‘ ‘
defined as time evolves but the lamellar structure remains o0 250 458 W0 850
intact and does not evolve to complete phase separation. By X (iattice units)

Igttlng the simulations run for much longer t'm@ O,OO FIG. 11. Upper panel shows the final state color order param-
time steps we checked that the lamellar structure is indeedyter, averaged over thedirection (vertical in Fig. 10 of lamellar
the final equilibrium state of the system and we are not obsgrycture, both with and without surfactant present. The time step
serving a metastable state with long equilibration time. Weshown is 9000. Note how the presence of surfactant sharpens the
also examined the stability of the structure against smalinterfaces between water and oil. Lower panel shows the final state
fluctuations in the density and found the lamellar structure taiistribution of the surfactant directokin lattice unit, averaged
remain stable. These results are in sharp contrast with thever they direction at time step 9000. The system size is?256
previous LGA simulations in which, starting from a layered
structure, complete phase separation was obsd@@dAs  field set up by the color gradient, howevdy,does evolve in
pointed out in Ref[25], in an infinite two-dimensional sys- time. A plot of the final state ofl,, averaged in thg direc-
tem with finite-temperature fluctuations, one expects lamellation, is shown in Fig. 11lower panel. It can be seen that the
structures to be unstable, due to Peierls instabilid@s The  surfactant directors have their largest values around the in-
Peierls theorem, however, does not make any statemetgrfaces, i.e., at the points where the color order parameter
about the stability of such structures in finite 2D systemschanges sign. It is interesting, albeit expected, that the sur-
The stability of the lamellar structure seen in our lattice-factant dipoles alter alignment, always pointing from water-
Boltzmann simulations and its instability in LGA simulations rich to oil-rich layers. The reason for this behavior is that,
thus provides numerical evidence that the Peierls mechanismeglecting surfactant-surfactant interactions, the direction of
is also capable of destabilizing periodic layered structures ithe equilibrium dipole vectors in our model is determined by
finite systems. the gradient of the color order parameter, as can be seen by
Next we examine the effect of surfactant on the layeredexpanding Eq(24) in a Taylor series in the ratio ¢¢;| to the
structure by setting up a simulation where there is, in addicolor gradient scale length. For the lamellar structure, the
tion to water and oil layers, a single layer of surfactant atcolor order parameter changes only in ghdirection with its
each of the oil-water interfaces. The average density of surslope changing sign alternately, in passing from a water-rich
factant in each monolayer was 1.0 and the initial conditionlayer to an oil-rich layer; as can be seen in Fig. 11 the sur-
for the surfactant dipole vectors at each site Wes0)=0.  factant dipole vectors flip direction every time this happens.
We found that the final state of the system is, once again,
lamellar. The presence of surfactant, however, causes the E. Self-assembly in mixtures of water and surfactant
water-oil interfaces to remain sharper than in the previous
simulations. This effect is shown in Fig. 1top panel

where the initial and final state of the color order parameter . its for bi i d factant ¢ W
(averaged over the direction, the direction perpendicular to gives results Tor binary water and surfactant systems. vwe

layerg are plotted along the axis for both sets of simula- kept the ave_rage density _Of wate_r fixed at 0.5 and pe@rmed
tions. two simulations, one with a high surfactant density

Due to the symmetry of the systedy, the component of =0.25 and one with a low surfactant density=0.071.
the dipole vector in the direction, does not evolve in time Snapshots of the simulation for the case of high surfactant
from the initial conditiond,=0. Under, the influence of the concentration are shown in Fig. 12. It can be seen that start-

Repeating the simulations performed for the ternary mix-
jures but setting the average density of(oil wate) to zero
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FIG. 13. Upper panel shows variation of the water density
FIG. 12. Snapshots of self-assembly of a uniform mixture ofwithin an “anti-ferromagnetic” domain averaged over thelirec-
water and surfactant into lamellar domains. From left to right andtion (which is vertical in Fig. 12 within the domain. The middle
top to bottom time steps 0,300,3000,9000 are shown. Theanel shows variation of surfactant density within the same domain.
surfactant-water density difference is shown in gray scaling withThe lower panel shows the final state distribution of dhécircles
black corresponding to high surfactant density and white correandd, (squarey of surfactant directors, averaged over theirec-
sponding to high water density. The average concentrations of waion (in lattice unit3. The time step shown in all panels is 3000.
ter and surfactant are 0.5 and 0.25, respectively. The system size is
256" indicating that there is another characteristic length scale in
this system, namely, the average size of lamellar domains.
ing from a uniform mixture of water and surfactant, the sys- |5 "order to identify the driving force behind self-
tem organizes itself in small domains each of which has &rganization of the system we performed two additional cal-
clear lamellar structure consisting of alternating water-richcyjations, using the same initial conditions as before. One
and surfactant-rich layers. These domains grow in time bugjmulation was performed with dipolar interactions among
not without limit. They are highly dynamic objects which gyrfactant molecules switched ofjf.=0) while in the other
continuously form and disintegrate but whose average sizgjmuylation we kepgss— 0.01 but switched off the coupling
does not grow in time once they are formed. In Fig. 13 Wepetween surfactant and water molecules, by setipgo 0.
display the variation of water and surfactant densities withing Figs. 14 and 15 the spherically averaged structure factor is
one of the domains, as an example. The densities are avegnown at time step 2500 as obtained from these simulations.
aged over they direction within the domain and are dis- For comparisorS(k,t) of the full simulations is also shown
played along the axis (the direction of density modulations at the same time step. It can be seen that switching off the
within this domain. Also shown ared, andd, components  jnteraction between surfactant dipoles results in a structure
of surfactant directors. It can be seen that the domain is buillyctor which has only a single peak neke1.6 while
up of a stack of surfactant-rich bilayers separated by watersyitching off water-surfactant interaction results in a struc-
rich layers each-2 lattice units wide. The surfactant direc- y,re factor with only a peak ne&r=0. This provides clear
tors are ordered antiferromagnetically within each domaingyigence that water-surfactant interactions are responsible
such that only the hydrophilic heads of surfactant moleculegyy the formation of alternating water-rich and surfactant-rich

are exposed to water-rich regions. In the case of the systefgyers while formation of domains is a consequence of dipo-
with low surfactant density visualization of the data indicatesjay jnteractions between surfactant particles.

the existence of weak density modulations in the system but
without any clear domain formation.

To further quantify the dynamics of self-assembly in the
binary water-surfactant system we make use of the Building on our recent work25] we developed in this
circularly-averaged surfactant structure factor. In Fig. 13 wepaper a lattice-Boltzmann model for ternary interacting am-
show S(k,t) at time steps 0, 1000, and 2500 for both sys-phiphilic fluids. The main features of the model are that in-
tems. It can be seen that in both caS&,t) has a peak teractions among fluid components are realized by introduc-
aroundk=1.6. This peak corresponds to the repeat period ofng self-consistently generated mean-field forces between
water and surfactant density modulations and its position bedifferent species and that the orientational degrees of free-
comes stable already fox< 100 time steps. In the case of the dom of amphiphilic species are explicity modeled. The
system with high surfactant concentration we see the ememean-field force is incorporated into the scheme in a way
gence of a second peak 8tk,t) at much smaller wavectors, which is consistent with the kinetic theory of interacting flu-

IV. CONCLUSIONS
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FIG. 14. Circularly-averaged surfactant density structure factor FIG. 15. Circularly-averaged surfactant density structure factor

S(k,t) for binary water and surfactant mixtures shown at time stepss(k’t) for a binary water and surfactant mixture at time step 2500

0 and 2500 for a 2F?6binary water-surfactant system. The averagecalculated with both water-surfactant and surfactant-surfactant cou-
density of water is kept at 0.5 while the surfactant average densit ling swiiched on(thick solid ling, only surfactant-water coupling

is increased from 0.071s(w=1:7) t00.25 (s:w=1:2). Forboth witched on(dashed ling and only surfactant-surfactant coupling

systemsS(k,t) has a peak nedr=1.6 whose position corresponds switched on(thin solid line. The system size is 256The average
to the repeat period of the lamellae. The peak nead is present concentrations of water and surfactant are 0.5 and 0.25, respec-
only for the system with high surfactant concentration and it signalé'vely'

the formation of lamellar domains whose average size correspongyrfactant aggregates in a binary water-surfactant system
to the position of this peak. clearly distinguishes our model from other existing lattice-
Boltzmann schemegl3—-15 which do not incorporate the
ids mixtures and we provided a physical interpretation forvectorial nature of surfactant molecules and are therefore un-
the action of this force in terms of off-diagonal matrix ele- able to describe the formation of such aggregates.
ments in the BGK collision operator. Natural_refinement_s of our moqlel would be the inclus_ion
Using a single set of force coupling constants, we havé’f_ fluctuations, e.g, via a ﬂgctuatmg force term compatible
shown that our model exhibits the correct 2D phenomenolWith the fluctuation-dissipation theorepa5] which enables
ogy for both binary and ternary phase systems. Various ex1€ Systém to move out of its metastable states. Also, some
perimentally observed self-assembling structures form in &f the instabilities which we encountered in the present
consistent way as a result of altering the relative amounts o od_el m|gh.t be mitigated .by using more realistic forms fpr
oil, water and amphiphile in the system. The presence o € interaction betvyeen different m.olleculgs and by adding
enough surfactant clearly arrests the growth of the domain e Enskog correctlprjs for the collisions in dense systems
and we showed that when this happens the final domain si 3] to the BGK .CO"'S'On operator. Our recently developed
is inversely proportional to the amount of surfactant presenpara”el[w] version of the lattice-Boltzmann mode_l should
in the system, in agreement with previous molecular dynam‘—'JlIIOW us to gxtend the present §tudy to 3.D fo_r which much
ics simulations. Our study of the stability of the lamellar more experimental data is available. Th's W.'” help us to
structure in 2D confirmed a striking difference betWeenselect parameters so that the model will provide a more re-

lattice-gas and lattice-Boltzmann simulations which resul listic deicrlptlond of e>_<per|mental obser:vatlons; we ariso
from the absence of fluctuations in the Iattice—BoItzmannﬂoIoe ]EO t enl Stl]fl yd various 'mpo”zf‘t phenomena such as
schemd 25]. Self-assembly into a local lamellar structure, as Ow oF compliex fluids in porous media.
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