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Lattice-Boltzmann model for interacting amphiphilic fluids
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We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of am-
phiphilic fluids @H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A
456, 2043~2000!#. Our method maintains an orientational degree of freedom for the amphiphilic species and
models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the
particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the
results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the
correct phenomenology of binary and ternary amphiphilic fluids.

PACS number~s!: 82.70.2y, 47.20.Hw, 64.75.1g
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I. INTRODUCTION

The lattice-Boltzmann~LB! method is a mesoscopic ap
proach to the study of the dynamics of fluids, intermedi
between macroscopic models, based on Navier-Stokes e
tions, and microscopic approaches, based on molecular
namics~MD! simulations. In this method, time, velocity, an
space are all discretized and a single-particle distribu
function is utilized to describe the time evolution of an e
semble of molecules having a discrete set of possible vel
ties @1,2#. The computationally demanding tracking of ind
vidual molecules is thus avoided and at the same time
ensemble-averaged distribution function retains much of
microscopic information. Macroscopic or hydrodynamic e
fects naturally emerge from mesoscale lattice-Boltzmann
namics, provided that the LB equation possesses the co
and necessary conservation laws and symmetries@1#. Histori-
cally, the lattice-Boltzmann model was first derived from
predecessor—the lattice-gas automata~LGA! @3–6#—but it
has been shown recently that the model can also be der
from kinetic theory by discretization of the Boltzmann equ
tion in velocity, space, and time@7,8#.

An important and promising area of application of t
lattice-Boltzmann method is for modeling the dynamics
multicomponent fluids. There is in particular much fund
mental and technological interest in modeling amphiph
systems; i.e., fluids comprising one or two immiscible pha
~such as oil and water! and an amphiphilic species~surfac-
tant!. The addition of surfactant to a binary immiscible flu
can result in complex structures on a mesoscopic len
scale, including lamellar, micelles and microemulsion pha
@9,10#. The nonequilibrium dynamics and hydrodynamics
these systems are difficult to simulate using a continu
approach based on Navier-Stokes equations. One major
ficulty these methods face is the existence of complica
interfaces between fluid components which can undergo
pological changes; another is that it is far from clear how
PRE 621063-651X/2000/62~6!/8282~13!/$15.00
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formulate a hydrodynamic description of these fluids. Micr
scopic approaches, based on molecular dynamics, are ab
deal with amphiphilic fluids, but they are still computatio
ally too demanding to investigate large-time dynamics~times
scales accessible to MD are typically of the order of na
seconds@11# whereas important time scales in such comp
fluids vary between 102112104 s) and the extended spatia
structures involved in many problems of interest.

The formation of fluid interfaces is a consequence of
teraction between the molecules of the fluids@12#, and the
LB models for multicomponent fluids come in two varietie
depending on the way interactions between fluid compone
are incorporated. In the free-energy approach@12–15# the
starting point is anansatzfor the free-energy functional o
the complex interacting fluid and the approach to equilibriu
is assumed to be governed by a Ginzburg-Landau or Ca
Hillard equation or some suitable generalization thereof
LB collision operator is then constructed that gives rise
the desired evolution equation in the hydrodynamic lim
The most attractive feature of this model is that the equi
rium state is fixeda priori by the choice of free-energy func
tional. This guarantees thermodynamic consistency at e
librium but limits the description of nonequilibrium
dynamics. For example, the one-component free ene
model is not Galilean invariant@16#. Furthermore, the
method relies on the ability to postulate a suitable form
the free energy, which might not be always available.
alternative approach, which is closer in spirit to kine
theory, is to add interactions between fluid components
introducing intermolecular forces between fluid particl
@17,24#. Very recently we proposed such a lattice-Boltzma
model for amphiphilic fluids@25# which is based on intro-
ducing the dynamics and interactions of amphiphilic m
ecules into the multicomponent lattice-Boltzmann scheme
Shan and Chen@17#. In the resulting ternary vector mode
which was inspired by the lattice-gas automata~LGA! for-
malism of Boghosian Coveney and Emerton@26#,
8282 ©2000 The American Physical Society
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PRE 62 8283LATTICE-BOLTZMAN MODEL FOR INTERACTING . . .
amphiphilic species possess both translational and orie
tional degrees of freedom, a feature which is crucial for c
turing much of the abovedescribed phenomenology of a
phiphilic systems.

The principal aim of the present paper is to further d
velop and explore this model and to assess and establis
general validity for modeling the dynamics of amphiphi
systems. In Sec. II we give a detailed description of
model and show that with slight modification, the mean-fie
treatment of intermolecular interactions in the model@17,25#
can be made consistent with the mean-field kinetic theory
interacting fluids, based on a set of coupled Boltzmann eq
tions. In Sec. III we use this modified model to simulate t
nonequilibrium dynamics of binary immiscible and bina
and ternary amphiphilic fluids in two dimensions. The
simulations demonstrate that the model exhibits the cor
dynamical behavior in the case of critical quenches of bin
fluids and it is capable of describing in a consistent way
phenomenology of various experimentally observed s
assembling structures, such as lamellae, droplet and sp
microemulsion phases, the arrest of separation of immisc
oil-water phases when enough surfactant is present in
system, and the formation of the lamellar phases in bin
water-surfactant systems. Finally, in Sec. V we draw so
conclusions from this work and discuss the prospects of
ture developments of the model.

II. LATTICE-BOLTZMANN MODEL FOR INTERACTING
FLUID MIXTURES

The lattice-Boltzmann scheme for a fluid mixture havi
Scomponents is defined in terms of the distribution functio
f i

s(x,t) belonging to the particles of components of the
fluid mixture ~e.g., s5water or oil in a binary system!. In
the BGK approximation@19# of the collision operator thes
equations are@2,7#

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !52
f i

s2 f i
s(eq)

ls
Dt, ~1!

whereci ( i 50,1, . . . ,M ) are a set of discrete velocity vec
tors on a regular lattice,x is a point on the underlying spatia
grid, f i

s(eq) is a local equilibrium distribution function,ls is
the relaxation time for components, andDt is the time step.

The number densityns and the mean velocityus of com-
ponents are given by

ns~x,t !5(
i

f i
s , ~2!

rs~x,t !us~x,t !5ms(
i

ci f i
s , ~3!

with rs5msns the density andms the mass of speciess.
The equilibrium distribution function should be chosen

such a way that the BGK collision operatorV i
s52( f i

s

2 f i
s(eq))/ls locally conserves the mass of each speciess

(
i

V i
s50. ~4!
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We also require that the momentum of all components
gether should be conserved locally

(
s

ms(
i

ciV i
s50. ~5!

A common choice which satisfies the above constraints
@20,21#

f i
s(eq)5v in

sF11
1

cs
2

ci•ũ1
1

2cs
4 ~ci•ũ!22

1

2cs
2

ũ2G , ~6!

wherev i is a weight factor andcs is the speed of sound, bot
of which are determined entirely by the choice of lattice. F
example, in the so-called D3Q19 lattice@21# ~19 velocity
vectors in three dimensions! cs51/A3 and v i51/3, 1/18,
and 1/36 forei50, ei51, andei52, respectively.

The requirement that the total velocity of all componen
together should be conserved at each lattice point result
the following form for the common velocityũ

ũ5

(
s

rsus

ts

(
s

rs

ts

, ~7!

where we have introduced the dimensionless relaxation t
ts5ls /Dt.

In the limit of small Mach numbers, i.e.,ũ/cs!1, where
the right-hand side of Eq.~6! is positive, the above choice o
f i

s(eq) results in Navier-Stokes hydrodynamics, where ea
fluid component s has kinematic viscosityns5(ts

21/2)cs
2 @20#.

A. Mean-field treatment of interactions

In order to describe immiscibility effects, some form
repulsive interaction between fluid components must be
troduced into the LB equations. In the Shan-Chen sche
@17#, coupling between fluid components is achieved by
cluding intermolecular interactions in the model. These
teractions are modeled as a self-consistently generated m
field force. Allowing only homogeneous isotropic intera
tions between nearest-neighbors, the mean-field forceFs act-
ing on particles of components is given by

Fs~x,t !52cs~x,t !(
s̄

(
x8

gss̄cs̄~x8,t !~x82x!, ~8!

where cs5cs@rs(x,t)# is the so-called effective mass
which can have a general form for modeling various types
fluids ~in the present study we have takencs5rs) andgss̄

is a force coupling constant, whose magnitude controls
strength of the interaction between components and s̄ and
whose sign determines whether this interaction is repuls
(gss̄.0) or attractive (gss̄,0). Shan and Chen incorpo
rated the above force term in the LB dynamics by adding
increment@17#
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dus5
Fs

rs
Dt ~9!

to the velocity ũ which enters the equilibrium distributio
function ~6! in the BGK collision operator.

With the choicecs5rs the above treatment of intermo
lecular interactions is consistent with kinetic theories of
teracting fluids, in which non-local interactions are describ
by including a self-consistently generated mean-field fo
term in the Boltzmann equation while local interactions a
treated as true collisions. Indeed, kinetic equations of
type have been successfully applied to describe gas-gas
ration into two phases@22# and, more recently, spinodal de
composition in binary fluids@27#. However, the way the
mean-field force enters the Shan-Chen model is not enti
consistent with the Boltzmann equation in the presence
force @28,29#. The explicit expression for the force term
the Shan-Chen model can be obtained by substitutinũ
1du into the equilibrium distribution function. This yields

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !

52
f i

s2 f i
s i (eq)

ts
1v in

sF ci2ũ

cs
2

1
~ci•ũ!

cs
4

ci GasDt

2
1

2
v in

sFas
2

cs
2

2
~ci•as!2

cs
4 GtsDt2, ~10!

whereas5Fs/rs is force per unit mass. As was shown b
Luo @28# and by Martyset al. @29#, by omitting the second
order term inas the above equation can be made consist
with a systematic derivation of the lattice-Boltzmann mod
in the presence of the forceas , as obtained from discretiza
tion of the corresponding Boltzmann equation, in the lo
Mach-number regime. In our scheme we omit this non-lin
term when calculating the effect of the self-consistently g
erated mean-field force, so that the resulting latti
Boltzmann scheme is consistent with the underlying Bo
mann equation in the presence of a force. Our final latti
Boltzmann equation is then given by

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !

52
f i

s2 f i
s i (eq)

ts
1v in

sF ci2ũ

cs
2

1
~ci•ũ!

cs
4

ci GasDt.

~11!

In the case of a single-component interacting fluid, rew
ing the force term in terms of distribution functionsni

s leads
to the following lattice-Boltzmann equation:

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !52
f i

s2 f i
s i (eq)

ts
1(

j
L i j

ss f j
s ,

~12!

whereL i j
ss is given by
-
d
e
e
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pa-
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r
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-
-

-

L i j
ss5v iF 1

cs
2 ~ci2cj !1

ci•cj

cs
4

ci GasDt. ~13!

Thus the net effect of the force term is to introduce o
diagonal matrix elements in the BGK collision operato
These matrix elements describe transitions from stateci to
statecj , andvice versa, due to the drift of particles under th
influence of the force during the timeDt. In the case of a
fluid mixture the BGK collision operator couples differe
fluid components even in the absence of the mean-fi
force, through the common velocityũ which entersf i

s(eq) .
The mean-field force introduces an additional non-local c
pling between fluid particles and in this case Eq.~11! can be
rewritten as

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !

52
f i

s2 f i
s i (eq)

ts
1(

s̄
(

j
L i j

ss̄ f j
s̄ , ~14!

whereL i j
ss̄ are matrix elements of the cross-collision ope

tor

L i j
ss̄5v iF 1

cs
2 ~dss̄ci2ass̄cj !1as,s̄

ci•cj

cs
4

ci GasDt ~15!

with

ass̄5
ns

ns̄
3

rs̄

ts̄

(
s̄

rs̄

ts̄

. ~16!

The above treatment of intermolecular interactions d
not take into account strong repulsive interactions betw
molecules at short distance which prevent them to ove
~the excluded volume effect@23#!. This effect is important in
calculating transport coefficients of dense gases and fl
@23# but we do not expect it to significantly alter the dynam
ics of microemulsions, which is the main focus of o
present work. The excluded volume effect can be introdu
in the model by adding Enskog corrections to the BGK c
lision operator@24#.

B. Modeling surfactant dynamics and interactions

A surfactant~or amphiphilic! molecule usually possesse
two different fragments, each having an affinity for one
the two immiscible components. In the case of a prototy
mixture of immiscible fluids such as oil and water, a typic
surfactant molecule would be an amphiphile that has a
drophilic head preferring to be in contact with water mo
ecules, and a hydrophobic tail preferring to be surrounded
oil. Under equilibrium conditions the surfactants are p
dominantly adsorbed at the oil-water interface, hence eff
tively screening the two-body repulsive interaction betwe
immiscible species. In our scheme@25# these essential char
acteristics of amphiphilic molecules are modeled by int
ducing a separate amphiphilic species into the Shan-C
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PRE 62 8285LATTICE-BOLTZMAN MODEL FOR INTERACTING . . .
model which possesses both translational and rotational
grees of freedom. This is achieved by modeling these spe
as idealized point dipoles. Consequently, the interaction
the amphiphilic molecules with each other and with nona
phiphilic molecules~such as oil and water! depends not only
on their relative distance but also on their dipolar orientat
@26#. Furthermore, a full description of the dynamics of a
phiphilic molecules requires a description of the propagat
of each single-particle distribution function as well as t
time evolution of their dipole vectors. Making the physica
reasonable assumption that the dipole moment carried
amphiphilic molecules is independent of their velocity,
average dipole vectord(x,t) is introduced at each sitex rep-
resenting the orientation of any amphiphile present the
The propagation of the amphiphilic molecules is then
scribed in our scheme by a set of BGK-like equations, o
for the distribution functionf i

s and one for the relaxation o
the average dipole vectord(x,t) to its local equilibrium ori-
entation@25#:

f i
s~x1ciDt,t1Dt !2 f i

s~x,t !

52
f i

s2 f i
s(eq)

ts
1(

s
(

j
L i j

ssf j
s1(

j
L i j

ssf j
s ,

~17!

d~x,t1Dt !5d̄~x,t !2
1

td
@ d̄~x,t !2deq~x,t !#. ~18!

In the above equationsf i
s(x,t) is the distribution function of

surfactant molecules andts andtd are dimensionless relax
ation times representing the rates of relaxation off i

s(x,t) and
d(x,t) to their local equilibrium distributionsf i

s(eq) and
deq(x,t), respectively. The collision operatorsL i j

ss and L i j
ss

have the same form as Eq.~15! and describe the effect of th
total mean-field force experienced by surfactant particles
to their interactions with nonamphiphilic particles and w
other amphiphilic particles. We shall specify these forc
shortly. Finally,d̄(x,t) is obtained from the following equa
tion of motion:

ns~x,t !d̄~x,t !5(
i

f i
s~x2ciDt !d~x2ciDt,t !. ~19!

The equilibrium distribution functionf i
s(eq) is chosen to

have the same form as Eq.~6! and, in analogy with the Weis
molecular field theory of magnetism@30#, the equilibrium
distribution deq(x,t) is obtained self-consistently from th
Boltzmann distribution as

deq~x,t !5d0

E e2bUv̂dV

E e2bUdV

, ~20!

wheredV is an element of solid angle,v̂ is a unit vector, and
U is the potential energy of a dipole in the mean field ge
erated by dipolar amphiphiles and nonamphiphilic molecu

U52 v̂•~hs1hc!. ~21!
e-
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In Eq. ~21! hs and hc are the mean fields resulting from
dipole-dipole interactions and the interaction between sur
tant dipoles and nonamphiphilic molecules, respectively.
Eq. ~20! bothd0 and the inverse temperatureb, are indepen-
dent parameters. Performing the integral yields for the eq
librium distribution

deq5d0Fcoth~bh!2
1

bhG ĥ ~22!

in 3D and

deq5d0F I 1~bh!

I 0~bh!G ĥ ~23!

in 2D, whereh is the magnitude ofh5hs1hc , andI 0 andI 1
are the zero and the first order modified Bessel functi
@31#, respectively.

The mean-field generated by water and oil molecules
given by

hc~x,t !5(
s

es(
i

ns~x1ciDt,t !ci , ~24!

wherees is the ‘‘charge’’ for various molecular componen
~which may take its values from the set$21,0,1%). In the
present simulations we takee51 for water molecules and
e521 for oil molecules. Similarly, the mean-field generat
by other surfactant molecules is given by

hs~x,t !5(
i

F(
j Þ0

ni
s~x1cjDt,t !uj•di~x1cjDt,t !

1ni
s~x,t !di~x,t !G , ~25!

where

uj5I2D
cjcj

cj
2

is the traceless second-rank tensor andD is dimension of the
lattice.

Finally, we specify the form of interaction between am
phiphilic molecules with water and oil particles and betwe
amphiphilic molecules themselves. These are obtained f
Eq. ~8! by treating each amphiphilic molecule as a pair
water and oil molecules displaced by a distanced(x,t) from
each other and performing a Taylor expansion ind in the
resulting expression for the total force@25#. Assuming that
the dipole head and tail have equal and opposite charge
561 and with only nearest-neighbor interactions cons
ered, the additional forces are given by

Fs,s~x,t !522cs~x,t !gss(
iÞ0

d~x1ciDt !

3S I2
cici

ci
2

D D cs~x1ciDt,t !, ~26!
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Fs,c~x,t !52cs~x,t !d~x,t !

3(
s

gss(
iÞ0

S I2
cici

ci
2

D D cs~x1ci ,t !,

~27!

and

Fs,s~x,t !52
4D

c2
gssc

s~x!(
i

H d~x1ciDt,t !d~x,t !:

F I2
cici

ci
2

DGci1@d~x1ciDt,t !d~x,t !

1d~x,t !d~x1ciDt,t !#•ciJ cs~x1ci1Dt,t !.

~28!

In the above equationsFs,s is the force acting on nonam
phiphilic particless ~water and oil! due to amphiphile di-
poles,Fs,c is the force acting on amphiphilic molecules d
to all nonamphiphilic particles, andFs,s is the force among
amphiphilic molecules themselves. The coupling consta
gss andgss determine, respectively, the strength of intera
tion between water and oil molecules and surfactant m
ecules, and among surfactant molecules themselves.
coupling coefficientgss should be chosen negative if w
wish to model attraction between two amphiphile heads
tails, and repulsion between a head and a tail.

III. SIMULATIONS

As mentioned earlier the principal aim of the prese
work is to assess the ability of our model to reproduce
basic properties of self-assembling amphiphilic fluids. F
this reason we choose not to explore the entire param
space of the model in the present study but rather
through a limited search in this space a canonical set of
rameters which allows us to describe generic behavior
consistent way. Another important consideration in choos
the parameters relates to the numerical instabilities wh
were found to occur when the force coupling constantgss̄ ,
gss , andgss, or the mean densities, were increased bey
certain threshold values. We found that these instabili
occur when the forcing terms cause the right-hand side
Eqs. ~14! and ~17! to become negative and are caused b
combination of the mean-field treatment of interparticle
teractions and the restriction of the lattice-Boltzmann sche
to low Mach numbers. With these considerations in mi
and after a restricted search in the parameter space o
model we arrived at the following set of canonical para
eters which, unless stated otherwise, are used throughou
simulations~the time stepDt is set to 1 throughout! gss

50, gss̄50.03, gss520.01, gss20.01, ts5ts51, td52,
ms51, ms52, d051, andb510. All calculations were per-
formed on a 2562 lattice subject to periodic boundary cond
tions. In the case of the binary oil-water systems we a
performed additional calculations on 5122 and 1282 lattices
in order to check for finite size effects.
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The CPU time and memory requirements of our algorith
both scale;LD, whereL is the linear dimension of the lat
tice. In two dimensions we were able to study adequate s
tem sizes using typical serial workstations. For examp
simulation of a ternary system on a 2562 lattice on a Silicon
Graphics 250 MHz processor workstation takes just unde
h to reach 3000 time steps~switching off the subroutines
which perform the surfactant dynamics calculations redu
the CPU time by 50%.! For the present calculations we use
a serial implementation of our lattice-Boltzmann algorith
In three dimensions, however, the serial algorithm quic
becomes prohibitive in terms of computer memory for mo
erately sized systems. Fortunately, an important feature
LB is its intrinsically parallel structure and we have impl
mented a parallel version of our algorithm@18# which allows
us to perform very large-scale 3D simulations on massiv
parallel platforms. We plan to report on the thre
dimensional model in future publications.

A. Binary oil-water system

The dynamics of phase separation in a binary mixtu
following a thermal quench into the unstable coexistence
gime, proceeds by spinodal decomposition. Immediately
ter the quench, small domains, with local concentratio
roughly corresponding to that of the two pure immiscib
phases, spontaneously form and grow and finally resul
complete phase separation@32#. To simulate phase separa
tion we set up a simulation with equal quantities of water a
oil with average densities 0.5, and no surfactant presen~a
‘‘critical quench’’!. This choice of average densities ensur
that we are well within the immiscibility region of the mode
The initial condition of these simulations is a uniform mi
ture of the two fluids with small random fluctuations in th
uniform densities. These fluctuations are necessary to m
the system out of a metastable uniform state, in which
mean-field forces are identically zero. The force term is i
tially set to zero andf i

s are set tof i
s(eq) calculated fromns

and ũ50 @Eq. ~7!#.
As can be seen from Fig. 1, immediately after the quen

small domains spontaneously start to form. As time evolv
sharp interfaces develop between the regions associated
each phase, and the branchlike structures which were for
at the earlier stage of simulations coarsen. The growth
domains continues and, if left to run for a large enough tim
the system would eventually reach the completely separ
state of two distinct layers of fluid. Phase-separation exp
ments typically measure the structure factorS(k,t), which
contains information on the time evolution of the vario
length scales present in the system. It is defined as the F
rier transform of the density-density correlation function. F
the discrete systems we are studying, we consider equ
lently

S~k,t !5
1

N U(
x

@q~x,t !2q̄~ t !#eik•xU2

, ~29!

where k5(2p/L)(mi1nj ), m,n51,2, . . .L; here L is the
linear lattice size,N5L2 is the total number of grid points in
the system,q(x,t)5nwater(x,t)2noil(x,t) is the total color
order parameter at grid pointx and timet, and q̄(t) is the
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spatial average of q~x,t! at timet. S(k,t) is further smoothed
by averaging over an entire shell ink space to obtain the
circularly averaged structure factor

S~k,t !5

(
k̂

S~k,t !

(
k̂

1

, ~30!

where the sum( k̂ is over a circular shell defined by (n
2 1

2 )<ukuL/2p,(n1 1
2 ) and the cutoff wave vectorkc has

the maximum possible value which is compatible with t
periodicity in k space. We use the first moment of th
circularly-averaged structure factor as a measure of the c
acteristic length scale of the system

k~ t !5

(
k

kS~k,t !

(
k

S~k,t !

. ~31!

The characteristic size of the domains is then given
R(t)52p/k(t).

Figure 2 displays the temporal evolution of the circular
averaged structure factor obtained for a critical quench i
5122 system. At early times in the simulations (t,4000 time
steps! we observed that the amplitude of the peak in
structure factor increases without the position of the p
changing in time. This behavior is indicative of initial shar
ening of the domains, as the amplitude of the peak inS(k,t)
is proportional to the domain mass within a characteris
domain size. As time evolves further, the peak ofS(k,t)

FIG. 1. Snapshots of phase separation of a binary oil-water m
ture during a critical quench. From left to right and top to botto
time steps 0,800,1600,2400,3200,4800,6400,8000,12 000,16
20 000,24 000,30 000,45 000,60 000,90 000 are shown. The sy
size is 2562.
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shifts to smaller wave numbers and its height increases
dicating the coarsening of the domains. At intermedi
times we also observe the appearance of a second pea
S(k,t), which later on becomes a shoulder of the main pe
and then merges with it. After an initial transient regime, t
dynamics of phase separation is often characterized b
single length scale. This length scale is usually described
a power law behaviorR(t)5ta. Simple dimensional analysi
of the hydrodynamical evolution equations in 2D yields f
the domain growth exponenta52/3, when the binary system
is in the inertial hydrodynamic regime@32,33#.

In Fig. 3 the time evolution ofR(t) is shown as obtained
from our lattice-Boltzmann simulations with system si
5122. Finite-size effects in this quantity are known to b
come important whenR(t) is comparable to the linear size o
the latticeL. We checked these effects by performing ad

x-

00,
em

FIG. 2. Temporal evolution ofS(k,t) for a critical quench in a
binary oil-water system. Time steps shown are, from bottom to t
t53200,4000,6400,9600,12 000,14 400,20 000,24 000. The sy
size is 5122.

FIG. 3. Logarithm of the average domain sizeR(t) ~lattice
units! as a function of the logarithm of the time~time steps! with
data taken from lattice-Boltzmann simulations of a critical quen
in binary immiscible phase separation. The straight line correspo
to a growth exponenta50.66 and is provided as a guide to the e
only. The system size is 5122.
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FIG. 4. Snapshots of time evolution of oil-in
water droplet microemulsion phase. From le
to right and top to bottom time
steps 0,200,400,600,800,1200,1600,2000,30
4000,5000,6000 are shown. The system size
2562.
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tional calculations ofR(t) for system sizes 1282 and 2562.
By comparing the results we deduced that finite-size error
our 2D simulations become important whenR(t)>L/5. The
3D lattice-Boltzmann simulations of Kendonet al. @34# seem
to indicate a somewhat larger value ofR(t) beyond which
these errors become pronounced. This might indicate
finite-size effects are more significant in 2D. Discarding bo
the early-time transient regime and the late-time regi
where finite-size effects are pronounced, we found that
late-time behavior ofR(t) in our simulations isR(t)
;t0.6660.01, in good agreement with the abovemention
scaling arguments and previous lattice-gas@36# and lattice-
Boltzmann@40# simulations of phase separation in 2D. W
note, however, that this result is only a first qualitative stu
of the dynamics of phase separation within our model a
more work is needed in order to unambiguously identify d
ferent scaling regimes within the parameter space of
model.

B. Microemulsion phases: oil droplets in water
and sponge phase

We used our model to simulate the different ternary m
croemulsion phases that are possible in 2D, namely, the
in-water droplet and sponge phases. In experimental sys
the two distinct microemulsion phases will form when t
appropriate concentrations of oil, water, and surfactant
present in the system below the critical temperature. T
oil-in-water droplet phase typically consists of finely divide
spherical regions of oil, with stabilizing monolayers of su
factant surrounding them, embedded within a continuous
ter background. If one increases the relative amount of o
the system and there is sufficient amphiphile present,
observes the formation of mutually percolating tubular
gions of oil in water, with a monolayer of surfactant sitting
the interface. In both these cases, the equilibrium state d
not correspond to complete separation of immiscible oil a
water regions, but rather to complex structures with v
different characteristic length scales that form as the resu
the presence of amphiphile@10#.
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In order to reproduce the oil-in-water droplet phase,
set up a simulation with a uniform mixture of oil, water, an
surfactant with small density fluctuations as our initial co
figuration. The average densities of oil, water, and surfac
are 0.42, 0.6, and 0.1, respectively. Figure 4 displays
results. We see the rapid formation of many small oil-
water droplets, whose size initially increases slightly, but
without limit. This is characteristic of the experimental dro
let phase. It occurs because the free energy penalty as
ated with the existence of many oil-water interfaces in t
phase, as compared to the complete oil-water phase se
tion, is compensated by the gain in free energy due to
sorption of surfactant dipoles at these interfaces. If coars
ing of oil droplets was to continue the interface area
adsorption of surfactant dipoles would decrease resulting
an increase in the amount of surfactant in bulk water or
The free energy penalty for bulk surfactant prevents t
from happening. The concentration of the surfactant is
visible in Fig. 4, but is high at the interface and low
oil-rich and water-rich regions, with the surfactant dipoles
the interface pointing on average from water-rich region
wards the oil-reach droplets~see also Fig. 1 and Fig. 2 in
Ref. @25#!.

In order to further quantify the result we show in Fig.
the time evolution of the circularly averaged structure fac
S(k,t). Once again we observe the formation of a distin
peak in the structure factor, indicating the sharpening of
domains. Interestingly, this happens much faster than in
case of the binary system. The presence of the surfac
seems to accelerate domain formation in the early stag
phase separation, an effect which has also been seen i
hybrid Ginzburg-Landau simulations of Kawakatsuet al.
@35#, and should be detectable experimentally. As tim
evolves the peak inS(k,t) increases in height and shift
further towards smaller values of the wavelength, indicat
the growth of droplets. From at least time step 5000 onwa
there appears to be a negligible amount of further movem
of the position of the peak, indicating that droplets ha
reached a maximum size and will grow no more. We o
served small oscillations in the intensity of the peak
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S(k,t) which suggest that the characteristic domain m
fluctuates in time.

To investigate the ability of the model to access t
sponge phase, we set the average densities of water an
both equal to 0.5 while keeping the average density of s
factant at the same value as before. The results are show
Fig. 6. Starting once again from a perturbed uniform mixtu
of fluids, this time we observe the growth of an interco
nected network of tubular regions of oil and water. T
width of the oil and water regions grows in size up to abo
4000 time steps. During this time the surfactant partic
which were initially distributed uniformly in the system, con
centrate around the various oil-water interfaces. Beyond
stage the system changes very little, indicating that the
served sponge phase is stable. This is also confirmed by
result for the circularly-averaged structure factor shown
Fig. 7.

FIG. 5. Temporal evolution of the circularly-averaged structu
factor S(k,t) for the microemulsion droplet phase shown in Fig.
Time steps shown, from bottom to top, aret5200,1000,2000,
3000,5000,6000.
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C. The effect of surfactant on domain growth dynamics

To further investigate the effect of surfactant on doma
growth dynamics in the sponge-phase we performed a
tional simulations in which we kept the average density
oil and water fixed at 0.5 while gradually increasing t
amount of surfactant in the system. The average densitie
surfactant used in these simulations are 0.05,0.1,0
0.20,0.30. We analyze the effect of varying the surfact
concentration using the domain sizeR(t) as a quantitative
measure. The domain size is calculated from the circula
averaged structure factor, as described in Sec. II. The res
are summarized in Fig. 8 where the domain sizes are plo
against time, and as a function of increasing surfactant c
centration. The presence of the surfactant significantly
tards the growth of the domains and it can be clearly s
that for surfactant concentrations larger than 0.05, the
main size reaches saturation. Following Boghosian, C

.
FIG. 7. Temporal evolution of the circularly-averaged structu

factor S(k,t) for the sponge microemulsion phase shown in Fig.
Time steps shown, from bottom to top, aret5200,1000,
2000,3000,4000,6000.
e
p
0,
he
FIG. 6. Snapshots of time evolution of spong
microemulsion phase. From left to right and to
to bottom time steps 0,200,400,600,800,120
1600,2000,3000,4000,5000,6000 are shown. T
system size is 2562.
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eney, and Emerton@36#, we analyzed the time-dependence
domain growth in terms of a stretched exponential form

R~ t !5R`2a exp~2ctd!, ~32!

whereR` , a, c, andd are adjustable parameters, which a
determined by a least-square fit to our data. As can be s
from Fig. 8 this form fits our results extremely well acro
the full time scale of the simulations and for all surfacta
concentrations considered. We also investigated a fit of
logarithmic form R(t)5a1b(ln t)c, which describes the
phase-separation of binary alloys in the presence of imp
ties @37#. Obviously, this form is unable to describe the la
time saturation of the domain size and we found that
root-mean-square errors using this form to describe the e
times of domain formation are also an order of magnitu
larger than those of the stretched exponential form. In
case with average surfactant density equal to 0.05 the
main size does not saturate; nevertheless Eq.~32! provides a
better fit to the slow growth of the domain size than t
logarithmic form for the time interval we considered (0,t
<12 000). LGA simulations@36,38# indicate, however, tha
the logarithmic from is a good fit for describing the dynam
ics of ‘‘metastable’’ ~i.e., long-lived! emulsions which do
eventually phase separate.

At late times in these simulations, small but persist
oscillations inR(t) can be seen in Fig. 8, which are absent
the case of binary systems. These oscillations have also
observed in LGA simulations, both in 2D@36# and in 3D
@38#. Their presence in our lattice-Boltzmann simulatio
confirms that these oscillations are caused by the additi
dynamics which the presence of amphiphile introduces
the system: they are not a consequence of statistical fluc
tions inherent in LGA.

Finally, we investigate the relationship between the fi
size of the domains and the surfactant concentration. Lar
et al. @41# used simplified MD simulations to study the d

FIG. 8. Time evolution of average domain sizeR(t) ~lattice
units! in a ternary system with equal concentrations of water and
(0.5). Curves from top to bottom correspond to systems with a
age surfactant concentration 0.05,0.1,0.15,0.2,0.3. The full lines
the stretched exponential fits to our data.
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namics of ternary oil-water-surfactant systems and found
the final domain sizeRf is inversely proportional to the av
erage concentration of surfactant moleculesn̄s :

Rf;
1

n̄s

. ~33!

In the deep quenches performed by Laradjiet al. surfactant
molecules entirely reside at the interfaces. This was not
case in the lattice-gas simulations of Emertonet al. @36# in
which a certain amount of surfactant existed as monome
bulk oil or water. After subtracting away fromn̄s a back-
ground monomer density, these authors also found a lin
relationship betweenRf and 1/n̄s . A similar situation to
lattice-gas simulations occurs in our simulations where a
nificant fraction of surfactant exists as monomers in bulk
or water. However, we found that even without correcti
for the background monomer density of surfactant Eq.~33!
gives a very good description of the relationship betweenRf

and n̄s . This is shown in Fig. 9 whereRf is plotted versus
the inverse ofn̄s . The condition that all surfactant molecule
should be at the interface does not therefore seem nece
for Eq. ~33! to hold, as long as the surfactant molecules
mainly concentrated at the interface.

D. Ternary phase: Lamellae

Next we use our model to investigate the stability of
lamellar structure, which is composed of alternating layers
oil-rich and water-rich phases separated by a layer of sur
tant. A preliminary discussion was given in@25#. We look at
the system with and without surfactant present in order fo
critical comparison to be made. A similar investigation of t
lamellar structure in 2D and in 3D has been performed p
viously using LGA@26,39#. In a similar way to those simu
lations, we set up the initial configuration of the system

il
r-
re

FIG. 9. Final domain sizesRf ~lattice units! as a function of the

inverse of the surfactant concentration 1/n̄s . The solid line is a
linear fit to the first four points of our data.
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layers of pure oil and pure water eight sites wide such t
each species has an average density 1.0.

Snapshots of our simulations for the binary case
shown in Fig. 10 for time stepst<9000. As can be seen from
this figure, the initial layered structure becomes less sha
defined as time evolves but the lamellar structure rema
intact and does not evolve to complete phase separation
letting the simulations run for much longer times~30 000
time steps!, we checked that the lamellar structure is inde
the final equilibrium state of the system and we are not
serving a metastable state with long equilibration time. W
also examined the stability of the structure against sm
fluctuations in the density and found the lamellar structure
remain stable. These results are in sharp contrast with
previous LGA simulations in which, starting from a layere
structure, complete phase separation was observed@26#. As
pointed out in Ref.@25#, in an infinite two-dimensional sys
tem with finite-temperature fluctuations, one expects lame
structures to be unstable, due to Peierls instabilities@42#. The
Peierls theorem, however, does not make any statem
about the stability of such structures in finite 2D system
The stability of the lamellar structure seen in our lattic
Boltzmann simulations and its instability in LGA simulation
thus provides numerical evidence that the Peierls mechan
is also capable of destabilizing periodic layered structure
finite systems.

Next we examine the effect of surfactant on the laye
structure by setting up a simulation where there is, in ad
tion to water and oil layers, a single layer of surfactant
each of the oil-water interfaces. The average density of
factant in each monolayer was 1.0 and the initial condit
for the surfactant dipole vectors at each site wasd(x,0)50.
We found that the final state of the system is, once ag
lamellar. The presence of surfactant, however, causes
water-oil interfaces to remain sharper than in the previ
simulations. This effect is shown in Fig. 11~top panel!
where the initial and final state of the color order parame
~averaged over they direction, the direction perpendicular t
layers! are plotted along thex axis for both sets of simula
tions.

Due to the symmetry of the systemdy , the component of
the dipole vector in they direction, does not evolve in time
from the initial conditiondy50. Under, the influence of the

FIG. 10. Snapshots of the evolution of the lamellar structure
the absence of surfactant. Time steps shown are clockwise from
to bottomt50,300,600,3000,6000,9000. The system size is 252.
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field set up by the color gradient, however,dx does evolve in
time. A plot of the final state ofdx , averaged in they direc-
tion, is shown in Fig. 11~lower panel!. It can be seen that the
surfactant directors have their largest values around the
terfaces, i.e., at the points where the color order param
changes sign. It is interesting, albeit expected, that the
factant dipoles alter alignment, always pointing from wat
rich to oil-rich layers. The reason for this behavior is th
neglecting surfactant-surfactant interactions, the direction
the equilibrium dipole vectors in our model is determined
the gradient of the color order parameter, as can be see
expanding Eq.~24! in a Taylor series in the ratio ofuci u to the
color gradient scale length. For the lamellar structure,
color order parameter changes only in thex direction with its
slope changing sign alternately, in passing from a water-r
layer to an oil-rich layer; as can be seen in Fig. 11 the s
factant dipole vectors flip direction every time this happe

E. Self-assembly in mixtures of water and surfactant

Repeating the simulations performed for the ternary m
tures but setting the average density of oil~or water! to zero
gives results for binary water and surfactant systems.
kept the average density of water fixed at 0.5 and perform
two simulations, one with a high surfactant densityn̄s

50.25 and one with a low surfactant densityn̄s50.071.
Snapshots of the simulation for the case of high surfac
concentration are shown in Fig. 12. It can be seen that s

n
op

FIG. 11. Upper panel shows the final state color order para
eter, averaged over they direction ~vertical in Fig. 10! of lamellar
structure, both with and without surfactant present. The time s
shown is 9000. Note how the presence of surfactant sharpens
interfaces between water and oil. Lower panel shows the final s
distribution of the surfactant directors~in lattice units!, averaged
over they direction at time step 9000. The system size is 2562.
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ing from a uniform mixture of water and surfactant, the sy
tem organizes itself in small domains each of which ha
clear lamellar structure consisting of alternating water-r
and surfactant-rich layers. These domains grow in time
not without limit. They are highly dynamic objects whic
continuously form and disintegrate but whose average
does not grow in time once they are formed. In Fig. 13
display the variation of water and surfactant densities wit
one of the domains, as an example. The densities are a
aged over they direction within the domain and are dis
played along thex axis ~the direction of density modulation
within this domain!. Also shown aredx anddy components
of surfactant directors. It can be seen that the domain is b
up of a stack of surfactant-rich bilayers separated by wa
rich layers each;2 lattice units wide. The surfactant direc
tors are ordered antiferromagnetically within each doma
such that only the hydrophilic heads of surfactant molecu
are exposed to water-rich regions. In the case of the sys
with low surfactant density visualization of the data indica
the existence of weak density modulations in the system
without any clear domain formation.

To further quantify the dynamics of self-assembly in t
binary water-surfactant system we make use of
circularly-averaged surfactant structure factor. In Fig. 13
show S(k,t) at time steps 0, 1000, and 2500 for both sy
tems. It can be seen that in both casesS(k,t) has a peak
aroundk51.6. This peak corresponds to the repeat period
water and surfactant density modulations and its position
comes stable already fort,100 time steps. In the case of th
system with high surfactant concentration we see the em
gence of a second peak inS(k,t) at much smaller wavectors

FIG. 12. Snapshots of self-assembly of a uniform mixture
water and surfactant into lamellar domains. From left to right a
top to bottom time steps 0,300,3000,9000 are shown.
surfactant-water density difference is shown in gray scaling w
black corresponding to high surfactant density and white co
sponding to high water density. The average concentrations of
ter and surfactant are 0.5 and 0.25, respectively. The system s
2562.
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indicating that there is another characteristic length scale
this system, namely, the average size of lamellar domain

In order to identify the driving force behind self
organization of the system we performed two additional c
culations, using the same initial conditions as before. O
simulation was performed with dipolar interactions amo
surfactant molecules switched off (gss50) while in the other
simulation we keptgss20.01 but switched off the coupling
between surfactant and water molecules, by settinggss to 0.
In Figs. 14 and 15 the spherically averaged structure facto
shown at time step 2500 as obtained from these simulati
For comparisonS(k,t) of the full simulations is also shown
at the same time step. It can be seen that switching off
interaction between surfactant dipoles results in a struc
factor which has only a single peak neark51.6 while
switching off water-surfactant interaction results in a stru
ture factor with only a peak neark50. This provides clear
evidence that water-surfactant interactions are respons
for the formation of alternating water-rich and surfactant-ri
layers while formation of domains is a consequence of di
lar interactions between surfactant particles.

IV. CONCLUSIONS

Building on our recent work@25# we developed in this
paper a lattice-Boltzmann model for ternary interacting a
phiphilic fluids. The main features of the model are that
teractions among fluid components are realized by introd
ing self-consistently generated mean-field forces betw
different species and that the orientational degrees of f
dom of amphiphilic species are explicitly modeled. T
mean-field force is incorporated into the scheme in a w
which is consistent with the kinetic theory of interacting fl

f
d
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is

FIG. 13. Upper panel shows variation of the water dens
within an ‘‘anti-ferromagnetic’’ domain averaged over they direc-
tion ~which is vertical in Fig. 12! within the domain. The middle
panel shows variation of surfactant density within the same dom
The lower panel shows the final state distribution of thedx ~circles!
anddy ~squares! of surfactant directors, averaged over they direc-
tion ~in lattice units!. The time step shown in all panels is 3000.
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ids mixtures and we provided a physical interpretation
the action of this force in terms of off-diagonal matrix el
ments in the BGK collision operator.

Using a single set of force coupling constants, we ha
shown that our model exhibits the correct 2D phenomen
ogy for both binary and ternary phase systems. Various
perimentally observed self-assembling structures form i
consistent way as a result of altering the relative amount
oil, water and amphiphile in the system. The presence
enough surfactant clearly arrests the growth of the dom
and we showed that when this happens the final domain
is inversely proportional to the amount of surfactant pres
in the system, in agreement with previous molecular dyna
ics simulations. Our study of the stability of the lamell
structure in 2D confirmed a striking difference betwe
lattice-gas and lattice-Boltzmann simulations which res
from the absence of fluctuations in the lattice-Boltzma
scheme@25#. Self-assembly into a local lamellar structure,
found in our simulations, has not been reported previou
for binary water-surfactant systems but has been observe
microemulsion experiments performed on ternary water,
and surfactant systems@43#. Our additional calculations in
dicate that by increasing the force coupling constants bey
a certain value the global lamellar phase, which has b
reported previously@10,44#, can also be reached in ou
model. The ability of our model to simulate self-assembly

FIG. 14. Circularly-averaged surfactant density structure fac
S(k,t) for binary water and surfactant mixtures shown at time st
0 and 2500 for a 2562 binary water-surfactant system. The avera
density of water is kept at 0.5 while the surfactant average den
is increased from 0.071 (s:w51:7) to 0.25 (s:w51:2). Forboth
systemsS(k,t) has a peak neark51.6 whose position correspond
to the repeat period of the lamellae. The peak neark50 is present
only for the system with high surfactant concentration and it sign
the formation of lamellar domains whose average size corresp
to the position of this peak.
e

r

e
l-
x-
a
of
f
s

ze
t
-

lt
n

ly
in
il

d
n

f

surfactant aggregates in a binary water-surfactant sys
clearly distinguishes our model from other existing lattic
Boltzmann schemes@13–15# which do not incorporate the
vectorial nature of surfactant molecules and are therefore
able to describe the formation of such aggregates.

Natural refinements of our model would be the inclusi
of fluctuations, e.g, via a fluctuating force term compatib
with the fluctuation-dissipation theorem@45# which enables
the system to move out of its metastable states. Also, s
of the instabilities which we encountered in the pres
model might be mitigated by using more realistic forms f
the interaction between different molecules and by add
the Enskog corrections for the collisions in dense syste
@23# to the BGK collision operator. Our recently develope
parallel @18# version of the lattice-Boltzmann model shou
allow us to extend the present study to 3D for which mu
more experimental data is available. This will help us
select parameters so that the model will provide a more
alistic description of experimental observations; we a
hope to then study various important phenomena such
flow of complex fluids in porous media.
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FIG. 15. Circularly-averaged surfactant density structure fac
S(k,t) for a binary water and surfactant mixture at time step 25
calculated with both water-surfactant and surfactant-surfactant
pling swtiched on~thick solid line!, only surfactant-water coupling
switched on~dashed line! and only surfactant-surfactant couplin
switched on~thin solid line!. The system size is 2562. The average
concentrations of water and surfactant are 0.5 and 0.25, res
tively.
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